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The purpose of this article is to review the basic differential
equations, even if only in an approximate form of sufficient accuracy,
which describe the equilibrium states of thin elastic shells after the
loss of the stability of the fundamental form of equilibrium. Inci-
dentally, there is developed a system of differential equations for the
determination of the load for which there is a loss of stability of the
basic form of equilibrium, and a qualitative picture of the strain
after the loss of stability is investigated. However, the results
obtained in the first three sections are more general and are applicable
to the investigation of other problems of the equilibrium of thin elas-
tic shells with finite displacements.

The following assumptions are made in the paper: (1) apart from
finite displacements of the points of a shell in the postcritical stage,
the deformations of the shell remain small; (2) the Kirchhof-Lyav
kinetic hypothesis on the deformation of a shell is assumed; (3) the
stressed state of the fundamental fomm of equilibrium is taken as withe
out moments,

l. The Deformation of the Mean Surface of a Shell During Finite
Displacements. The mean surface of a shell is considered to be related
To internal coordinates x! and x°. The following abbreviations will be
used in the paper:

r_ - radius vector of the point (xl,xz),.r = r(xl, x2);
ri - coordinate vectors, r;j = ¢ r/ g xi;
ajj = components of the basic metric form, ajj = ri e rj; they
are the components of a vector
a = discriminant of the basic metric form, a = ajjasy = ajoany;
cij = components of the discriminant tensor, cjj =0, c12 = = ¢12
~Y35; B
n -~ unit vector along the normal, 2n = ¢ T X8 3 . )
bjj = components of the second metric form, bjj =n . d e r/dxld xJ3
Vj - symbol for covariant differentiation.

Let r* be the radius vector of a point after deformation, the
position of which before deformation is given by the radius vector r.
In the following we shall in general mark with an asterisk all quantities
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related to the deformed mean surface. The internal coordinates xi
and x2 of the point considered do not change during deformation.

The transformation of the linear elements dr of the surface during
deformation into dr* can be represented by a homogeneous affine trans-
formation in an infinitely small neighborhood

dr¥edr+dreV (1.1)

where V is the affine operator of the transformation. The trans-
formation of the line elements considered can be resolved in the
neighborhood of an arbitrary point into a rotation without deformation
and a subsequent symmetric transformation [1], caused by a pure strain,
with respect to the fundamental basis rj, n; after the rotation we
shall refer to pj, me

Let the line element dr be transformed during rotation into a line
element dp. Using an affine operator of rotation P this can be repre-
sented as an isometric transformation in an infinitely small region

dp=dr+drep (1.2)
as a particular case of (1.2) we get
al
Pi =Ty +Tj * P 2m =c Py ¥ Pg (1.3)
According to the conditions of an isometric transfomation
Pi ® Pj = Tj* Iy (1.L)

The pure strain is given by a symmetric affine transformation
in an infinitely small region after rotation:

dr¥=dp+dpeD (1.5)

The affine operator D we shall call the first strain tensor of
the mean surface; it is symmetric by definition, that is, designating
the covariant components of D by iij: we have & ij = &;ie

From (1.3) it follows that the vectors p; fomm a covariant tensor
of the first rank with vector components, therefore V;p; are the
components of a tensor of the second rank with vector components [2].

From the resolution

..a’
Vi = (by5 = My m + &

-2-



1

|
it follows that . j and Z ; 3 are the components of tensors of second ‘
and third ranks Wédshall ci¥f the tensorply ; the second strain tensor, |

\

The relation of the tensor & ;s to the first strain tensor &
can be found from the condition of fntegrability

c“3V3 £y =0 (1.7)

vhere r; is supposed to be of the form

¥ (W, @

ry (ai ¥ £i) p¢ (1.8)
which represents a particular case of the expression (1.5).

The vector equation (1.7) gives three consistency equations
satisfied by the strain

Cdle% s o C@B(;‘; +£-;’) ZTBI = Q (1.9)

aB B v .
c -C b_ = =0 1,10
H“ap @ (gg= M) (1.10)
Furthermore, by covariant differentiation with respect to xK

of equation (l.hs it is not hard to find a skew-symmetric tensor
ik relative to the indices k,k: i

tijk == iji

sElce the tensor Zijk is defined by only two quantities, let us say
19 let
J,

z’ ijk = = Cik Z 3 (1.11)
In the case of small strain it is easy to find zj from equation
(1.9)2
2,- «B
j=c VB < oLj (1.12)

The resolution of (1.6) must obviously satisfy the Ricci identity

B
QCd VBVdf p; = C“‘B ngi“?\ p) (1.13)

where Riym, are the components of the Riemann tensor of curvature.
In order to develop this vector equation we note that covariant
differentiation of the equations
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p; o m =0, mem®=1
with respect to xJ gives us

a
v\j m= = (b¢j - l.;‘-‘d'j) P (1.1’4)

The Ricci identity (1.13) gives us three scalar equations satis-
fied by the strain

3 Ay e SB xP (bjp,wé;‘;OQ; 0 (1.15)

wﬁ’ YA

(2b e Mu8- 2VﬂVp{ ) =0 (1.16)

ya a8 "
and to these equations may be added the consistency equation (1.10)
satisfied by the strain.

In the case of small displacements one may neglect in these
equations tems that are nonlinear with respect to the components of
the first and second strain tensors. The equations obtained in this
way for the strain agree with the equations published by A. L.
Goltdenveyze r3,

2. Static Relations During Finite Displacements. In the absence
of a linear theory of shells we shall investigate the equilibria of
elements of the shell in the deformed, i.e., the final state.

Let Ti V a be the reduced principal vector of forces and Mi Va
the reduced principal moment of forces (relative to a point on the
mean surface) acting on the coordinate surface x! = const.

Starting from the condition of equilibrium of an elementary triangle
cut from the shell it is not difficult to show that T! and Ml are
tensors of the first rank with vector components.

We resolve Ti and M along the vectors p; and m:

. . . &
Ti = i +N'm M; = c'a'Ml 2.1
Pa' ’ i -] Pa_ (2.1)
Since pj is a covariant tensor of the first rank, it follows from
(2.1) that T1J and MiJ are contravariant tensors of the second rank,
say tensors of the tangential forces and moments, and N! is a contra-
variant vector of the transverse forces.

We consider an element of the shell bounded by the coordinate
surfaces xi, xi + dxI = const. and the external surface z = +1/2 t.
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We designate the principal vector of all the external forces
acting on this element of the shell by XV & dxl dx2 and let

oL
X =X + X o2
1 m (22)

Furthermore, we designate the principal moment of all the external
forces acting on the element of the shell considered by M V& dxl yx?
and let o
M=} 2e

= Py (2.3)

The conditions of equilibrium of the shell require that

= ddoo (1% VE) +x 2V 1% 4 x =0 (2.0)
a X

1 d
YV 2 dx¢%

In the developed form we obtain the equation

(MaVa) + ra;*xTa‘ +IVI=V¢M°‘ +r°:"xT°‘ + M =0
(2.5)

o o
T (bﬂ“-w&) +VwN #X =0 (2.7)
i | i valg YP i, eiy % 0 1Y
A/ Qi c VPEYoc' (agtEy) N+ chM 0(2.8)
g _F Y
i B - ) tegylag +Ea) TV =0 (2.9)

In the following, for the initial position of the shell we shall
assume the position that precedes the loss of stability of the funda=-
mental form of the equilibrium. We suppose that the initial stress is
constant and without momeni{s. We denote the tensor of the tangential
forces in this state by ng) and the components of the principal vector

of the external forces by XEO)’ Xy After the loss of stability of

the fundamental form of the equilibrium there arises a mixed stressed
state, characterized by the internal conditions

I = yld #st, wld,  wl
which is accompanied by a field of external forces
x=xyl + ¥, X =Xy +Y
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It is obvious that in the equilibrium state

H B, o:ﬂ A i
VoS *cglly *S Vp Eya - 17 @l i) "(2.10)

- T(O)aﬁﬂlﬂw-l' Saﬁ (bﬂa - d«B) +Vde’ + Y =0 (2.11)
ai ; af YP

Vi +clgh VT I *al +€“i ) =0 (2.12)
a  YB ) £ aY B oL o
Cﬂ M (baY l.laJ‘Y) + gy € o T(O) + CBY(a“ a 22?13) 0

3« The Laws of Elasticity. Taking the distribution of strain
through the thickness of the shell in accordance with the hypothesis of

Kirchhof-lLyav, it is not hard to show that within the limits of accuracy
of this hypothesds [L] the relations between the tensors of the internal
forces and the strain tensors are not at all different from those in the

theory of small displacements.,

For this purpose we must assume that apart from the final displace=-
ment of the mean surface the deformatmns remain small, and consequently

terms of the sort €, &E:J’ u,lag can be neglected in comparison with

the tems€ The refmement of the relations given below by non-

linear tems of %ﬂe type I.b needs to be done only in the case
of 1nf1n1tely small strains of f'frst, order, the concept of which is
given below in Section 6. However, for the shells used in engineering
construction this view of strain, obviously, can only be taken in very
exceptional cases, and therefore this refinement of the relations

is not carried out here. The student can find it in the work of Chien

[8].

Omitting the calculations, we arrive at the final form [3]

sij = peiinfg Lps M= pEii*Pu_ g (3.1)

vhere

EtB s s s . s s
O EIJUN & o1 0 4 ‘Clm CJD
12(1 =¥ %) (3.2)

here E is Young!s modulus, V is the Poisson coefficient, and t is the
thickness of the shell, It is also easy to find the reverse relation-
ShipS “ﬁ ¢ﬂ
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where 12
Bt =2 D' =257 Pijun ™2y 2jn = VCin Cjp (31)

e Detemining the Critical Load. In the equilibrium state
infinitely close to the fundamental equilibrium form, but qualitatively
differing from it through those same external conditions, sij, muiJ,

Nij, €1, and [le will be infinitely small quantities and therefore
the1r products in the differential equations can be neglected. Then
the equilibrium equations (2.10) = (2.13) have the form

vo‘Sai-i-cBT(o)“ﬂﬁVE-bl ,9 5“’-0 (Le1)

& b - T(0) B#,B¢+ Vd Vﬁ Mﬁ¢ = 0 (Le2)
o LY B
™ MYﬂ by + CstﬁﬁT(w + 18 S =0 (Le3)

The equations for the consistency of the strain will not be
different from those of the linear theory of shells; from (1.15),
(1416) and (1.10) we get

- abB YP i
ci¥ ¥ Vﬂ“’Yf c c 5 gd-Y 0 (Lels)
(2!3 10°
oBBY
cae "bd,ﬁ - EdaDTE (Le6)

The physical relations (3.1) and (3.3) are unchanged.

The nonzero solution of the system (L.1)-(L.6) is possible only
for definite values of the tensor of the tangential forces )1J
The stressed state corresponding to the tensor T( )1J will be’ taken
as the initial stressed state. The metric tensors’a;; and bjj are also
referred to this state,

The value of the external loading for which different forms of
equilibrium are possible will as usual be called the critical loading,.

Certain static properties of shells are defined by the values of
three geometrical parameters: the thickness of the shell t, the least
radius of curvature R, and the smallest dimension of the shell L,

The shell is called thin if the ratio t/L = N s smalle The
camber of a shell is characterized by the ratio L/R; let

L/R = AF
-7 -



It is convenient to consider shells as cambered for which r > 0;
in addition if r 2 1 we consider the shell To be extremely cambered.
Cambered and extremely cambered shells will be the object of further
investigation,

We take the quantity L as unity and relate the mean surface of
the shell to a coordinate system having the property that the principal
termms of the tensor aj j~~1l, Such an auxiliary limitation is feasible
for cambered shells: 1t is useful for the qualitative analysis of the
fundamental equations presented at the beginning of this section. For
such a system of coordinates the principal value of the tensor b; )~1‘.
In the following we shall say that the tensor tj; ji is cormnensurable with
NU if the principal temm of the tensor tj; ~7\

In the equations (Liel)=(Le6) let the pr1n01pal termm of the tensor
My ve the valueMh-and let the tensors £ ;j, T(q) 1j ve commensurable
w1thM_, € and E >\ c+l respectively where e an& c are still unknown.

Then according to (3.1) the tensors sij and 1iJ are commensurable with
E;.L) etl and Ep_] respectively. PFurthermore, during covariant differenti-
ation let the order of the unknowns be changed by a factor of )\'k, S0
that, for instance,

Vm M’ij/"/o(.)-k, Vm eijﬂﬂle-k

Here k is also a still undefined quantity, It is not difficult to
find the physmi lue of k: the wave length of a protruding wall of
a shell will be Vi\

Wle shall distinguish two types of strain during the loss of stability
of the fundamental equilibrium form. Let us say that the mean surface of
the shell during the loss of stability is: (a) rigid, if the tensors
by L pB 5 and V; V; €, are comensurable, and (b) nonrigid to
flrst order if the tensoi1 v; ¢ i & pn is commensurable with the tensor

ch“‘Pﬁ '

In case (a) obviously
re=e -2k
and in case (b)

r+l=¢ -2k
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Cambered Shells (r~~ Q)

Strain of Type (a)e. The qualitative analysis of equation (L.2)
shows that the critical loading will be smallest when e = 2k = 1;
in this case c assumes the value 1. After determining these quantities
it is apparent that in equations (L.l)=(L.6) one may neglect certain
nonessential terms, Namely, in the detemmination of the critical
loading it is sufficient to consider the equations

Vasaiuo, ca55a6=o (Le7)

Fa
s‘“3 bﬂa - T(O;"B/.bm * Vg VeM = Q (4.8)

as the equations of equilibrium, and the equations
oB B
¢ Vﬁ ""a_i =0, ¢ P-

A

aB =9 (Le9)

(Byg Hu 8 -Vp & = 0 (L 10)

as the equations of consistency of strain;_ the terms omitted are of
order \ with respect to the terms retainedls [lliote: In_the following
we shall say simply that the Wterms omitted are of order Nt if they
are of this order with respect to the terms retained.] In addition to
these equations we have the physical relations (3.1).

Strain of Type (b)e The analysis of equation (L.2) shows that ¢
will have a maximum for e = ¢ = 1,5, and here 2k = 0,5, It is egsy
to verify that in equations (La7) ,sr\ui E,ems omitted are of orderS\O.S
while in equations (L.9) of order *
written in the fomm

«B YP
c c bTG. U-/P A 0
in order to determine M. . we obtain the full system of linear

homogeneous equations. ﬂ is the fundamental system of equations of
infinitely small first~order deflections.

. Since equation (Li.5) can be

In Section 6 it is proved that in all cases of the loss of
stability fhe i3 can be expressed by means of a function of the dis=-
placements W, ﬂamely

Mg =N Vi (La12)

An infinitely small first-order deflection with a loss of stability
is realizable if W is the solution of the boundary problem that
satisfies the differential equation

-9 -



aB YP
c c bYd-VF V,a W=0 (Le12)

and certain boundary conditions imposed in the problem of the loss of
stability of the fundamental equilibrium formm. This solution may also
be lacking, but nonetheless it is possible that in a rather large region
strains of type (b) simply do not occur. Then, of course, 1.0< c 2
1.5. The analysis as carried out for ¢ and k refers to an infinitely
small region of the shell, but the results obtained hold in general for
all shells if the strain is qualitatively homogeneous over the whole
mean surface. In the opposite case the critical loading increases on
account of the more rigid regions.

Extremely Cambered Shell (r > 1)

Strain of Type (a)e The qualitative analysis shows that strains
of the shell are characterized by values of k = 0, ¢ = 1, and the
parameter that defines the critical loading c = 2, The critical state
is determined by equations (Le7)=(4.10), and the temms omitted are now
of order A2, When there is a loss of stability an infinitely small
deflection of the mean surface occurs.

Strain of Type (b). The critical loading can be determined from
the equation
abB

o8
- T(0) ’LB“ +V‘,L Vg u =0 (Le13)

Here the term omitted is of orderjh.. It is easily found that in
the present case also, ¢ = 2, k = Q,

These results were first obtained by Zoelly [10] who applied an
energetic methQd to determine the critical loading. We note that for
the parameter in Zoelly's work the ration t/R is taken.

Conclusions. The preceding analysis shows that the critical loading
is alwgys determined by equations (l4.7)=(L.10) to an accuracy of at
least *?y In fact for a loss of stability in shells, we cannot
determine in advance for any particular practical case that the strain
will be of type (b), and therefore it is proper in this case to start
from the more general equations (le7)=(Le10).

At the end of the paper equations (l.7)=(L.10) will be presented
in a form more convenient for integration.

5. Equilibrium of a Shell in the Postcritical Stage. The
equilibrium state of a shell after the loss of stability of the funda-
mental (without moments) equilibrium state is determined by the
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equilibrium equations (2.10)=(2.13) and the strain consistency equations
(1.15), (1416) and (1.10), and also the components of the tensors of
strain and internal forces are connected by the physical relations (3.1)
or (3+3). However this system is rather complex for carrying out
computations, and we shall attempt through qualitative analysis of the
postcritical stage to retain only essential terms in these equations,

We consider a certain equilibrium state of a shell in the post-
critical stage. In_this state let the tensors gi' and A ;; be
commensurable with N¢ and A™ respectively, then é{g,&ording %o 53.1)
the tensors SiJ and MiJ are commensurable with E A°™" and E N\
respectivelys The quantities e and m are bounded below, since all
stresses must be within the elastic limits, For the sake of simplifi-
cation we take m 2~ 0 and e >~ 1; these values hold if ¢/ /E =
where @2 is the limit of the proportionality. First of all it is
obvious that the equilibrium equations (2.10)=(2.13) can be replaced by

the system Ba

Vs ' - bla-plia)ggr  +vi=o (5.1)
o8 aB o B
S bﬁd - (T(O) +5 )""'Ba+ vd. Vﬁ H Y -(?5.2)

& YP o
CﬁM (ba‘Y-#&,Y)‘*C&-BS =0 (5.3)

but further simplifications are as yet unfounded.

In order for our discussion to be applicable to the widest area,
we shall assume that the external loading does not change essentially
after a loss of stability.

Immediately after a loss of stability, as we saw in Section L, the
strain of a shell is characterized by the fact that covariant differ-
entiation increases the order of the unknown quantities, generally
speaking by a factor of ~K, It should not be assumed however with an
increase of the deformation in the postcritical stage this property
would change numerically even if only by a little bit, since this
would require a qualitative change of the field of the displacements,
The load for which such a qualitative change of the field of displace~
ments occurs is called the second critical loading. We shall consider
the equilibrium of a shell in a stage between the first two critical
loadings.

The classification of the states of shells are based on the
properties of the consistency equations (l.16). Ue shall say that
strains of the mean surface of the shell with relatively large
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displacements, the field of which is qualitatively determined with the
loss of stability of the fundamental equilibrium form is (A) rigid if
the tensors bjj M or Py Py and V. V. €, are commensurable,
and (B) nonrigid of first order if the tensor Jbij Moy, or Mg s Mo

is commensurable with the tensor -1 V.V j € 1qe Consequently for
strains of type (A)

r+me~e -2k if r<dn

2no~c =2k if r>n

for strains of type (B)
r+me ~e¢ =2k-1if r <m
2m ~e =2k = 1 if r >n

In the following we shall consider the equilibrium state of
cambered and extremely cambered shells in the postcritical stage with
finite displacements with rigid (A) and nonrigid (B) strains of the
mean surface, distinguished for this case from the rigid (a) and non-
rigid (b) strains of the mean surface for the loss of stability,

However, a consideration of the change from a nonrigid strain of
type (b) into a rigid strain of type (A) or on the other hand from (a)
to (B) requires an analysis of the strain in the transition region, which
we shall call the semirigid strain of the mean surface and denote by (C).

Quantitatively the strain of type (C) is determined by the relations
r+me~e -2k =-05ifr<m
2n~e =2k =05 if r >mn

The analysis carried out concerning the order of the individual
quantities in the basic equation for finite displacements shows that in
all cases it is possible to employ the simplified equations

c“ﬁv 2] u‘ia,‘ 0, cd'B Wypg =0 (5.4)

VG,S * v =0, B Sa‘ﬁ'= 0 (5.5)

instead of (1.15), (1.10) and (5.1), (5.3)s In Table 1 are shown the
orders of the tems omitted with respect to those retained; if, for
instance, they are of order>\-5 this is shoun in the table by the
number 0,5,

i
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Occasionally certain tems in equations (1.16) and (5.2) are also
unimportant, The order of these terms is also shown in the table in the
same form as mentioned above,

We have limited our consideration of equilibrium states in the
postcritical stage during large displacements, the field of which is
qualitatively determined during a loss of stability of the fundamental
equilibrium form. Thus, the wave length of a protruding wall is
already defined for critical loading.

However in the postcritical stage there may exist other equilibrium
forms, for which the field of displacements is qualitatively different
from those considered, For these forms there might be a quite different
wave length for a protruding wall, and therefore one should not consider
that equations (1.16), (5¢li), (5.2) and (5.5) are sufficiently complete
for the definition of the equilibrium forms mentioned,

The tensor Q ij and consequently also the tensor st a1so contain,
generally speaking, parts which do not increase with differentiation,
but this does not change the results of the analysis.

6. The Introduction of the Displacement and Stress Functions. A
very simple qualitative investigation of the postcritical stage of both
cambered and extremely cambered shells has shown that the most general
system of differential equations is required to consider cases 1 and 7
of Table 1 where the basic system consists of equations (1.16), (5.L),
(5¢2) and (5.5) with all tems. All the remaining alternatives are
obtained from this system by omitting certain nonessential terms and
not adding new ones,

Practically, it is always proper to use the system (1.16), (5.L),
(542) and (5.5) because in the solution of actual problems we cannot
tell in advance whether the strain of the mean surface for large dis-
placements will be nonrigid or not, However, we now know that for non-
rigid strain, new terms in the equations are not necessary.

The nature of the strain in the postcritical region or rather a
small gaussian curvature of extremely cambered shells makes it possible
to express the components of the second strain tensor by means of a
scalar function of the displacement W:

Wij=V; V;u (6.1)

Actually the right-hand equation of (5.U) saié',isfies this identically
and the left-hand one does to an accuracy of NeT¥eK,
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. In the same way it can be shown the equations (5.5) in case
¥i = 0 are satisfied to an accuracy of at least N2r+2k if

1j = ci0cIF F 642
S c ‘ﬁx.‘qb (6.2)
F is an arbitrary scalar function, the so-called stress function.

Functions of the displacement W and the stress F are determined
from equations (1.16) and (5.2). Expressing € ;; through F and MiJ

through W using the physical relations (3.L) and (3.1), we get two
equations

Y _BP, @y AP
28' a° ' VgV Wy VPF -cl (2ba5‘%W W -V, Vgl
VyVpt) =0 (643)

P
cu‘Ycﬂ ]:ad‘pvY VP F - cdvcgva VP F e Vm%w - T(O)d"g

Va VB W+ Da%Y aﬁpvﬁ qu VY Vp W+Y =0 (6.k)

In the derivation of these equations unimportant terms are intro-
duced on changing the order of differentiation.

Equations (6e3) and (6.L) are the fundamental differential equations
for determining equilibrium states in the postcritical stage of shell if
the tangential component of the external load y* has a negligible value
in the left~hand equation of (5.5).

In the particular case of a flat plate the basic equations (6,3)
and (6.4) do not differ from the equations of von Karman for flat plates
[5]e These equations for tze case of a circular cylindrical shell were
first derived by L. Donnell® and later by Tsien {7}« Finally these
equations were obtained by Chien [8] as a particular case ( [ 12)
during the investigation of thin plates and shells.

The basic equations for the determination of the critical loading
(4e7)=(L.10) can be brought to the following form in the same way

oY BP ayY BP .
Bt a”la ' v‘e VY V/’F -c¥ ¢ deVY VPM 2'6(.)5)
Br
T g Ver - T(0)0“9‘7@ Yot + %" HP g,
Y/ Yy Vo lu=0 (6.6)

Equations (6.5) and (6.6) in an orthogonal coordinate systenm
were first published by V. Z. Vlasov [9].
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